Visualising the Tutte Polynomial Computation

نویسندگان

  • Bennett Thompson
  • David J. Pearce
  • Gary Haggard
چکیده

The Tutte polynomial is an important concept in graph theory which captures many important properties of graphs (e.g. chromatic number, number of spanning trees etc). It also provides a normalised representation that can be used as an equivalence relation on graphs and has applications in diverse areas such micro-biology and physics. A highly efficient algorithm for computing Tutte polynomials has been elsewhere developed by Haggard and Pearce. This relies on various optimisations and heuristics to improve performance; however, understanding the effect of a particular heuristic remains challenging, since the computation trees involved are very large. Therefore, we have constructed a visualisation of the computation in order to study the effect of various heuristics on the algorithms’ operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

Tutte Polynomials and Link Polynomials

We show how the Tutte polynomial of a plane graph can be evaluated as the "homfly" polynomial of an associated oriented link. Then we discuss some consequences for the partition function of the Potts model, the Four Color Problem and the time complexity of the computation of the homfly polynomial.

متن کامل

Computing the Tutte polynomial of a hyperplane arrangement

We define and study the Tutte polynomial of a hyperplane arrangement. We introduce a method for computing it by solving an enumerative problem in a finite field. For specific arrangements, the computation of Tutte polynomials is then reduced to certain related enumerative questions. As a consequence, we obtain new formulas for the generating functions enumerating alternating trees, labelled tre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007